Python3《机器学习实战》学习笔记(四):朴素贝叶斯基础篇之言论过滤器

Mr丶苏泽
12770Mr丶苏泽网络安全主管
2017-08-23 21:39:39
12770 2017-08-23 21:39:39


一 前言

   朴素贝叶斯算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。但由于该算法以自变量之间的独立(条件特征独立)性和连续变量的正态性假设为前提,就会导致算法精度在某种程度上受影响。








   本篇文章将从朴素贝叶斯推断原理开始讲起,通过实例进行辅助讲解。最后,使用Python3编程实现一个简单的言论过滤器。



二 朴素贝叶斯理论

   朴素贝叶斯是贝叶斯决策理论的一部分,所以在讲述朴素贝叶斯之前有必要快速了解一下贝叶斯决策理论。


1 贝叶斯决策理论

   假设现在我们有一个数据集,它由两类数据组成,数据分布如下图所示:








   我们现在用p1(x,y)表示数据点(x,y)属于类别1(图中红色圆点表示的类别)的概率,用p2(x,y)表示数据点(x,y)属于类别2(图中蓝色三角形表示的类别)的概率,那么对于一个新数据点(x,y),可以用下面的规则来判断它的类别:
  • 如果p1(x,y) > p2(x,y),那么类别为1
  • 如果p1(x,y) < p2(x,y),那么类别为2
   也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。已经了解了贝叶斯决策理论的核心思想,那么接下来,就是学习如何计算p1和p2概率。


2 条件概率

   在学习计算p1和p2概率之前,我们需要了解什么是条件概率(Condittional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。








   根据文氏图,可以很清楚地看到在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B)。








   因此,








   同理可得,








   所以,








   即








   这就是条件概率的计算公式。


3 全概率公式

   除了条件概率以外,在计算p1和p2的时候,还要用到全概率公式,因此,这里继续推导全概率公式。
   假定样本空间S,是两个事件A与A’的和。








   上图中,红色部分是事件A,绿色部分是事件A’,它们共同构成了样本空间S。
   在这种情况下,事件B可以划分成两个部分。








   即








   在上一节的推导当中,我们已知








   所以,








   这就是全概率公式。它的含义是,如果A和A’构成样本空间的一个划分,那么事件B的概率,就等于A和A’的概率分别乘以B对这两个事件的条件概率之和。
   将这个公式代入上一节的条件概率公式,就得到了条件概率的另一种写法:










4 贝叶斯推断

   对条件概率公式进行变形,可以得到如下形式:








   我们把P(A)称为”先验概率”(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。
   P(A|B)称为”后验概率”(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。
   P(B|A)/P(B)称为”可能性函数”(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。
   所以,条件概率可以理解成下面的式子:

后验概率 = 先验概率 x 调整因子
  • 1
  • 1

   这就是贝叶斯推断的含义。我们先预估一个”先验概率”,然后加入实验结果,看这个实验到底是增强还是削弱了”先验概率”,由此得到更接近事实的”后验概率”。
   在这里,如果”可能性函数”P(B|A)/P(B)>1,意味着”先验概率”被增强,事件A的发生的可能性变大;如果”可能性函数”=1,意味着B事件无助于判断事件A的可能性;如果”可能性函数”<1,意味着”先验概率”被削弱,事件A的可能性变小。
   为了加深对贝叶斯推断的理解,我们一个例子。








   两个一模一样的碗,一号碗有30颗水果糖和10颗巧克力糖,二号碗有水果糖和巧克力糖各20颗。现在随机选择一个碗,从中摸出一颗糖,发现是水果糖。请问这颗水果糖来自一号碗的概率有多大?
   我们假定,H1表示一号碗,H2表示二号碗。由于这两个碗是一样的,所以P(H1)=P(H2),也就是说,在取出水果糖之前,这两个碗被选中的概率相同。因此,P(H1)=0.5,我们把这个概率就叫做”先验概率”,即没有做实验之前,来自一号碗的概率是0.5。
   再假定,E表示水果糖,所以问题就变成了在已知E的情况下,来自一号碗的概率有多大,即求P(H1|E)。我们把这个概率叫做”后验概率”,即在E事件发生之后,对P(H1)的修正。
   根据条件概率公式,得到








   已知,P(H1)等于0.5,P(E|H1)为一号碗中取出水果糖的概率,等于30÷(30+10)=0.75,那么求出P(E)就可以得到答案。根据全概率公式,








   所以,








   将数字代入原方程,得到








   这表明,来自一号碗的概率是0.6。也就是说,取出水果糖之后,H1事件的可能性得到了增强。
   同时再思考一个问题,在使用该算法的时候,如果不需要知道具体的类别概率,即上面P(H1|E)=0.6,只需要知道所属类别,即来自一号碗,我们有必要计算P(E)这个全概率吗?要知道我们只需要比较 P(H1|E)和P(H2|E)的大小,找到那个最大的概率就可以。既然如此,两者的分母都是相同的,那我们只需要比较分子即可。即比较P(E|H1)P(H1)和P(E|H2)P(H2)的大小,所以为了减少计算量,全概率公式在实际编程中可以不使用。


5 朴素贝叶斯推断

   理解了贝叶斯推断,那么让我们继续看看朴素贝叶斯。贝叶斯和朴素贝叶斯的概念是不同的,区别就在于“朴素”二字,朴素贝叶斯对条件个概率分布做了条件独立性的假设。 比如下面的公式,假设有n个特征:








   由于每个特征都是独立的,我们可以进一步拆分公式








   这样我们就可以进行计算了。如果有些迷糊,让我们从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。
   某个医院早上来了六个门诊的病人,他们的情况如下表所示:
症状职业疾病
打喷嚏护士感冒
打喷嚏农夫过敏
头痛建筑工人脑震荡
头痛建筑工人感冒
打喷嚏教师感冒
头痛教师脑震荡
   现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?
   根据贝叶斯定理:








   可得:








   根据朴素贝叶斯条件独立性的假设可知,”打喷嚏”和”建筑工人”这两个特征是独立的,因此,上面的等式就变成了








   这里可以计算:








   因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。
   这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。
   同样,在编程的时候,如果不需要求出所属类别的具体概率,P(打喷嚏) = 0.5和P(建筑工人) = 0.33的概率是可以不用求的。



三 动手实战

   说了这么多,没点实践编程怎么行?
   以在线社区留言为例。为了不影响社区的发展,我们要屏蔽侮辱性的言论,所以要构建一个快速过滤器,如果某条留言使用了负面或者侮辱性的语言,那么就将该留言标志为内容不当。过滤这类内容是一个很常见的需求。对此问题建立两个类型:侮辱类和非侮辱类,使用1和0分别表示。
   我们把文本看成单词向量或者词条向量,也就是说将句子转换为向量。考虑出现所有文档中的单词,再决定将哪些单词纳入词汇表或者说所要的词汇集合,然后必须要将每一篇文档转换为词汇表上的向量。简单起见,我们先假设已经将本文切分完毕,存放到列表中,并对词汇向量进行分类标注。编写代码如下:

# -*- coding: UTF-8 -*- """
函数说明:创建实验样本

Parameters:
    无
Returns:
    postingList - 实验样本切分的词条
    classVec - 类别标签向量
Author:
    Jack Cui
Blog:
    https://blog.csdn.net/c406495762
Modify:
    2017-08-11
"""
def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #切分的词条 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1] #类别标签向量,1代表侮辱性词汇,0代表不是 return postingList,classVec if __name__ == '__main__':
    postingLIst, classVec = loadDataSet() for each in postingLIst:
        print(each)
    print(classVec)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

   从运行结果可以看出,我们已经将postingList是存放词条列表中,classVec是存放每个词条的所属类别,1代表侮辱类 ,0代表非侮辱类。








   继续编写代码,前面我们已经说过我们要先创建一个词汇表,并将切分好的词条转换为词条向量。

# -*- coding: UTF-8 -*- """
函数说明:创建实验样本

Parameters:
    无
Returns:
    postingList - 实验样本切分的词条
    classVec - 类别标签向量
Author:
    Jack Cui
Blog:
    https://blog.csdn.net/c406495762
Modify:
    2017-08-11
"""
def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #切分的词条 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1] #类别标签向量,1代表侮辱性词汇,0代表不是 return postingList,classVec """
函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0

Parameters:
    vocabList - createVocabList返回的列表
    inputSet - 切分的词条列表
Returns:
    returnVec - 文档向量,词集模型
Author:
    Jack Cui
Blog:
    https://blog.csdn.net/c406495762
Modify:
    2017-08-11
"""
def setOfWords2Vec(vocabList, inputSet): returnVec = [0] * len(vocabList) #创建一个其中所含元素都为0的向量 for word in inputSet: #遍历每个词条 if word in vocabList: #如果词条存在于词汇表中,则置1 returnVec[vocabList.index(word)] = 1 else: print("the word: %s is not in my Vocabulary!" % word) return returnVec #返回文档向量 """
函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表

Parameters:
    dataSet - 整理的样本数据集
Returns:
    vocabSet - 返回不重复的词条列表,也就是词汇表
Author:
    Jack Cui
Blog:
    https://blog.csdn.net/c406495762
Modify:
    2017-08-11
"""
def createVocabList(dataSet): vocabSet = set([]) #创建一个空的不重复列表 for document in dataSet:              
        vocabSet = vocabSet | set(document) #取并集 return list(vocabSet) if __name__ == '__main__':
    postingList, classVec = loadDataSet()
    print('postingList:\n',postingList)
    myVocabList = createVocabList(postingList)
    print('myVocabList:\n',myVocabList)
    trainMat = [] for postinDoc in postingList:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    print('trainMat:\n', trainMat)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79

   从运行结果可以看出,postingList是原始的词条列表,myVocabList是词汇表。myVocabList是所有单词出现的集合,没有重复的元素。词汇表是用来干什么的?没错,它是用来将词条向量化的,一个单词在词汇表中出现过一次,那么就在相应位置记作1,如果没有出现就在相应位置记作0。trainMat是所有的词条向量组成的列表。它里面存放的是根据myVocabList向量化的词条向量。








   我们已经得到了词条向量。接下来,我们就可以通过词条向量训练朴素贝叶斯分类器。

# -*- coding: UTF-8 -*- import numpy as np """
函数说明:创建实验样本

Parameters:
    无
Returns:
    postingList - 实验样本切分的词条
    classVec - 类别标签向量
Author:
    Jack Cui
Blog:
    https://blog.csdn.net/c406495762
Modify:
    2017-08-11
"""
def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #切分的词条 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1] #类别标签向量,1代表侮辱性词汇,0代表不是 return postingList,classVec """
函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0

Parameters:
    vocabList - createVocabList返回的列表
    inputSet - 切分的词条列表
Returns:
    returnVec - 文档向量,词集模型
Author:
    Jack Cui
Blog:
    https://blog.csdn.net/c406495762
Modify:
    2017-08-11
"""
def setOfWords2Vec(vocabList, inputSet): returnVec = [0] * len(vocabList) #创建一个其中所含元素都为0的向量 for word in inputSet: #遍历每个词条 if word in vocabList: #如果词条存在于词汇表中,则置1 returnVec[vocabList.index(word)] = 1 else: print("the word: %s is not in my Vocabulary!" % word) return returnVec #返回文档向量 """
函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表

Parameters:
    dataSet - 整理的样本数据集
Returns:
    vocabSet - 返回不重复的词条列表,也就是词汇表
Author:
    Jack Cui
Blog:
    https://blog.csdn.net/c406495762
Modify:
    2017-08-11
"""
def createVocabList(dataSet): vocabSet = set([]) #创建一个空的不重复列表 for document in dataSet:
        vocabSet = vocabSet | set(document) #取并集 return list(vocabSet) """
函数说明:朴素贝叶斯分类器训练函数

Parameters:
    trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
    trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
    p0Vect - 侮辱类的条件概率数组
    p1Vect - 非侮辱类的条件概率数组
    pAbusive - 文档属于侮辱类的概率
Author:
    Jack Cui
Blog:
    https://blog.csdn.net/c406495762
Modify:
    2017-08-12
"""
def trainNB0(trainMatrix,trainCategory): numTrainDocs = len(trainMatrix) #计算训练的文档数目 numWords = len(trainMatrix[0]) #计算每篇文档的词条数 pAbusive = sum(trainCategory)/float(numTrainDocs) #文档属于侮辱类的概率 p0Num = np.zeros(numWords); p1Num = np.zeros(numWords) #创建numpy.zeros数组,词条出现数初始化为0 p0Denom = 0.0; p1Denom = 0.0 #分母初始化为0 for i in range(numTrainDocs): if trainCategory == 1: #统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)··· p1Num += trainMatrix
            p1Denom += sum(trainMatrix) else: #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)··· p0Num += trainMatrix
            p0Denom += sum(trainMatrix)
    p1Vect = p1Num/p1Denom                                      
    p0Vect = p0Num/p0Denom return p0Vect,p1Vect,pAbusive #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率 if __name__ == '__main__':
    postingList, classVec = loadDataSet()
    myVocabList = createVocabList(postingList)
    print('myVocabList:\n', myVocabList)
    trainMat = [] for postinDoc in postingList:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = trainNB0(trainMat, classVec)
    print('p0V:\n', p0V)
    print('p1V:\n', p1V)
    print('classVec:\n', classVec)
    print('pAb:\n', pAb)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117

   运行结果如下,p0V存放的是每个单词属于类别0,也就是非侮辱类词汇的概率。比如p0V的倒数第6个概率,就是stupid这个单词属于非侮辱类的概率为0。同理,p1V的倒数第6个概率,就是stupid这个单词属于侮辱类的概率为0.15789474,也就是约等于15.79%的概率。我们知道stupid的中文意思是蠢货,难听点的叫法就是傻逼。显而易见,这个单词属于侮辱类。pAb是所有侮辱类的样本占所有样本的概率,从classVec中可以看出,一用有3个侮辱类,3个非侮辱类。所以侮辱类的概率是0.5。因此p0V存放的就是P(him|非侮辱类) = 0.0833、P(is|非侮辱类) = 0.0417,一直到P(dog|非侮辱类) = 0.0417,这些单词的条件概率。同理,p1V存放的就是各个单词属于侮辱类的条件概率。pAb就是先验概率。








   已经训练好分类器,那么我们可以开始使用分类器进行分类了。

# -*- coding: UTF-8 -*- import numpy as np """
函数说明:创建实验样本

Parameters:
    无
Returns:
    postingList - 实验样本切分的词条
    classVec - 类别标签向量
Author:
    Jack Cui
Blog:
    https://blog.csdn.net/c406495762
Modify:
    2017-08-11
"""
def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #切分的词条 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1] #类别标签向量,1代表侮辱性词汇,0代表不是 return postingList,classVec """
函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0

Parameters:
    vocabList - createVocabList返回的列表
    inputSet - 切分的词条列表
Returns:
    returnVec - 文档向量,词集模型
Author:
    Jack Cui
Blog:
    https://blog.csdn.net/c406495762
Modify:
    2017-08-11
"""
def setOfWords2Vec(vocabList, inputSet): returnVec = [0] * len(vocabList) #创建一个其中所含元素都为0的向量 for word in inputSet: #遍历每个词条 if word in vocabList: #如果词条存在于词汇表中,则置1 returnVec[vocabList.index(word)] = 1 else: print("the word: %s is not in my Vocabulary!" % word) return returnVec #返回文档向量 """
函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表

Parameters:
    dataSet - 整理的样本数据集
Returns:
    vocabSet - 返回不重复的词条列表,也就是词汇表
Author:
    Jack Cui
Blog:
    https://blog.csdn.net/c406495762
Modify:
    2017-08-11
"""
def createVocabList(dataSet): vocabSet = set([]) #创建一个空的不重复列表 for document in dataSet:
        vocabSet = vocabSet | set(document) #取并集 return list(vocabSet) """
函数说明:朴素贝叶斯分类器训练函数

Parameters:
    trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
    trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
    p0Vect - 侮辱类的条件概率数组
    p1Vect - 非侮辱类的条件概率数组
    pAbusive - 文档属于侮辱类的概率
Author:
    Jack Cui
Blog:
    https://blog.csdn.net/c406495762
Modify:
    2017-08-12
"""
def trainNB0(trainMatrix,trainCategory): numTrainDocs = len(trainMatrix) #计算训练的文档数目 numWords = len(trainMatrix[0]) #计算每篇文档的词条数 pAbusive = sum(trainCategory)/float(numTrainDocs) #文档属于侮辱类的概率 p0Num = np.zeros(numWords); p1Num = np.zeros(numWords) #创建numpy.zeros数组,词条出现数初始化为0 p0Denom = 0.0; p1Denom = 0.0 #分母初始化为0 for i in range(numTrainDocs): if trainCategory == 1: #统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)··· p1Num += trainMatrix
            p1Denom += sum(trainMatrix) else: #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)··· p0Num += trainMatrix
            p0Denom += sum(trainMatrix)
    p1Vect = p1Num/p1Denom
    p0Vect = p0Num/p0Denom return p0Vect,p1Vect,pAbusive #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率 """
函数说明:朴素贝叶斯分类器分类函数

Parameters:
    vec2Classify - 待分类的词条数组
    p0Vec - 侮辱类的条件概率数组
    p1Vec -非侮辱类的条件概率数组
    pClass1 - 文档属于侮辱类的概率
Returns:
    0 - 属于非侮辱类
    1 - 属于侮辱类
Author:
    Jack Cui
Blog:
    https://blog.csdn.net/c406495762
Modify:
    2017-08-12
"""
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1): p1 = sum(vec2Classify * p1Vec) * pClass1 #对应元素相乘。 p0 = sum(vec2Classify * p0Vec) * (1.0 - pClass1) if p1 > p0: return 1 else: return 0 """
函数说明:测试朴素贝叶斯分类器

Parameters:
    无
Returns:
    无
Author:
    Jack Cui
Blog:
    https://blog.csdn.net/c406495762
Modify:
    2017-08-12
"""
def testingNB(): listOPosts,listClasses = loadDataSet() #创建实验样本 myVocabList = createVocabList(listOPosts) #创建词汇表 trainMat=[] for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) #将实验样本向量化 p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses)) #训练朴素贝叶斯分类器 testEntry = ['love', 'my', 'dalmation'] #测试样本1 thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) #测试样本向量化 if classifyNB(thisDoc,p0V,p1V,pAb):
        print(testEntry,'属于侮辱类') #执行分类并打印分类结果 else:
        print(testEntry,'属于非侮辱类') #执行分类并打印分类结果 testEntry = ['stupid', 'garbage'] #测试样本2 thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) #测试样本向量化 if classifyNB(thisDoc,p0V,p1V,pAb):
        print(testEntry,'属于侮辱类') #执行分类并打印分类结果 else:
        print(testEntry,'属于非侮辱类') #执行分类并打印分类结果 if __name__ == '__main__':
    testingNB()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167

   我们测试了两个词条,在使用分类器前,也需要对词条向量化,然后使用classifyNB()函数,用朴素贝叶斯公式,计算词条向量属于侮辱类和非侮辱类的概率。运行结果如下:











四 总结

朴素贝叶斯推断的一些优点:
  • 生成式模型,通过计算概率来进行分类,可以用来处理多分类问题。
  • 对小规模的数据表现很好,适合多分类任务,适合增量式训练,算法也比较简单。
朴素贝叶斯推断的一些缺点:
  • 对输入数据的表达形式很敏感。
  • 由于朴素贝叶斯的“朴素”特点,所以会带来一些准确率上的损失。
  • 需要计算先验概率,分类决策存在错误率。
其它:
  • 本文中的编程实例,只是简单的实例。存在一定的问题,需要进行改进,下篇文章会讲解改进方法;
  • 同时,本文中的编程实例,没有进行前期的文本切分,下一篇文章会讲解英文单词和中文单词的切分方法;
  • 下篇文章将使用sklearn进行中文实例练习;
  • 朴素贝叶斯的准确率,其实是比较依赖于训练语料的,机器学习算法就和纯洁的小孩一样,取决于其成长(训练)条件,”吃的是草挤的是奶”,但”不是所有的牛奶,都叫特仑苏”。
  • 如有问题,请留言。如有错误,还望指正,谢谢!

本文标题:Python3《机器学习实战》学习笔记(四):朴素贝叶斯基础篇之言论过滤器
本文作者:Mr丶苏泽
本文来自:蚁安黑客官网
转载请注明本文链接:http://bbs.mayidui.net/t907.html
游客
登录黑客论坛后才可以回帖,黑客登录 或者 注册黑客
weixin
蚁安黑客

找黑客工具、找黑客教程、找黑客朋友,你想不到的黑客技术这儿都有!

微信号:baiyiwangan